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ON THE CHOICE OF VARIANCE
FOR THE LOG RANK TEST.,

by
Mark Brown

ABSTRACT

sample problem with censored data.
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The log rank test is widely used for comparison of survival curves,

This paper examines various estimators for the variance of the log rank
test statistic, These include the Mantel-Haenszel variance, the permu-

tation variance of Peto and Peto and several newly proposed estimators,

The results generalize to a wide class of test statistics for the two
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1. Introduction. The log rank test is widely used for comparison of
survival curves. There are two versions of the test which differ in the
choice of variance for the same test statistic T. The MH{Mantel-Haenszel)
variance, an estimate of Var T which is unbiased independent of differences -
in censoring, and the permutation variance of Peto and Peto, for which the
variance is computed under the assumption of equal censoring.

This paper examines the choice of variance, It is observed that for
equal sample sizes the MH variance tends to underestimate the true variance
when T is large in absolute value. As this is the situation where rejection
of the null hypothesis is to be seriously considered, it appears that the
true type 1 error will tend to be. higher than that assumed, and the reported
P value will tend to be too low. Examples with small sample sizes are given
to illustrate this phenonena. Further work is needed to see if P values are
seriously distorted for larger samples.

In section 4 it is shown that under equal sample sizes the permutation
variance tends to overestimate the true variance when censoring is unequal.
It thus appears prudent to use the permutation variance rather than the MH
variance in assessing significance.

In section 5 alternative variance estimators are proposed.

The log rank results generalize- to a wider class of test statistics.

This point is discussed in section 6.
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2. weview of the log rank test., Sample 1 consists of n individuals and

sample . of m individuals. For eaca we observe eitaer the time of deati
or censoring wnichever occurs first, and we know which of the two takes
place. For simplicity we assume that no ties occur among the K uncensored
observations in the combined sample which are labeled as t) <ty ... <t
Jefine R, to be the number of patients in the combined sample at risk at
time t;} i.e. those for whom tihe minimum of the death and censoring times

are 2 t.. Similarly Rli(RZi) is the number of patients at risk from group

1(2) at ﬁ;. Define 6, = 1 if the death occuring at t; is from sample 1, 0
K
if from sample 2, vefine Nl = Z Gi’ the number of uncensored observations

1

from sample 1. The hypothesis of interest is i The survival distributions

0
of groups 1 and 2 are the same. The alternative can be one or two-sided,

the one-sided alternative favoring group 2 survival would be le The hazard
rate for group 1, hl’ exceeds that for group 2, hz, in the range of interest.

The log rank test statistic is defined by:

K R,. K R,.

1i 1i

(2'1) T= 2 §.« ==—}= N, - Z [alalt
i=1| * % 1 a1 Ry

If censoring is assumed to ve independent of survival then inde-

pendent of differences in censoring for tne two groups we have:
(2.2) E, T=0
(2.3) E, T>0

The test of H0 vs H{, under the MH(Mantel-tlaenszel) approach is to

1
reject liy for T large: the distribution of T under Hy is approximated by a

normal distribution with mean 0 and variance:




(2.4)

The MH variance, o;H, is an unbiased estimator of VarHuT. independent
of differences in censoring between the two groups.

Peto and Peto [10] observed that undef the assumption of equal censoring
: a test based on the log rank statistic, T, can be interpreted as a sum of
scores rank test. Define the score of a patient with observation ZL as

1 if ZL is uncensored .

UL =€ - Z —l5 where € " e Then T = z Ut.

it sz, 0 if Z, is censored. group 1
1 ie L
The permutation variance of T is easily computed as:
K
3 2. nm - 1
» (2.4) Up T—T_')-n’m el K izl -ri'

The permutation test based on T is a conditional test given A, where A
is the sample outcome with grcup identity of patients deleted, In the absence

of equal censoring neither the MH test nor the permutation test based on T

. e

are conditional tests given A. The conditional mean of T under H, given A

depends on the censoring and will generally not be zero. Furthermore °:H l

is generally not conditionally unbiased for Var, (T{A) .
0
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3. A discussion of the M-H variance, Suppose that n = m, Below is a

plausibility argument for the assertion that the M variance tends to
underestimate the true variance, VarHAT, when T is large in absolute value,
A consequence of this would be exageratedly small P values under the MH
test. The plausibility argument is difficult to quantify, Illustrative
examples with small sizes are given, which do indicate the existence of a
problem, Further work is needed to examine how serious the problem is for
larger sample sizes.,

Consider the sample points which lead to a large absolute value of T,
and thus lead the statistician to consider rejection of Ho. In general they
are characterized by an excess of uncemsored observations from one of the
samples. This leads for many i to an inbalance between Ru and R2i causing
Rii Ray
Y

to be small, and consequently o:H to be small, Large values of
R

i
|T] tend to be accompanied by small values of MK causing exageratedly

large |T|/°MH' and P values which are too small, The statistician is observing

R,.
—%i close to zero or one, seeing that it has resulted largely from an in-
i

balance in deaths rather than censoring, and then estimating the variance at

Rig Ros R

that stage by . is ignoring the fact that under Ho -%i-should not be
R; i
i

as extreme as in the current case, As the statistician is attempting to
estimate the variance under Ho, he is ignoring an important consideration.
The fact that in other cases (|T| small) ignoring similar information leads
to an overestimate, and the two balance out to make o:H unbjased, does not

alleviate the difficulty,




Below are two cases, n = m= 3, and n s m = 4, both without

censoring.

Table 1 below considers n = m = 3. The values of O:H appear in
column 1. In column 2 the average value of |T| is computed for sawple

R 2 2 . . 2
points with common g . . Note that as o increases ELITIIOMHJdecreases.

"The sample correlation coefficient between 05“ and |T| equals -.86.

The average of O;H over tne 20 sample points equals the permutation
variance 1.065, If the ranks 1, 2, 3 are observed for sample 1 tuen
the exact P value is .05; the P value using a normal approximation
with permutation vs-iance is .0365; the P value using ofm = .08 as

approximating variance is .0124,

Table 1 (n=m=3; no censoring)

o:h E(lTlla;H) number of cases
.68 1.85 2
1)) 1.52 2
.96 1.17 4

1.15 .52 4

1.21 .50 8

Table 2 is similar to table 1 with n = m = 4. In this case the
sample correlation coefficient between c;“ and |T| equals -.88, sligntly
higher in aosolute value than for n = m = 3, The permutation variance

equals 1.51.

v - ———— e b s wos e eyt
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Table 2 (n=m=4; no censoring)

‘a:H <E(IT||G;H) number of cases
.88 2.54 2
1.06 2,29 2
1.14 2.09 2
1.17 1.85 4
1.29 1.95 2
1.37 1.75 2
1.39 1.52 4
1.43 1.17 4
] 1.46 1.17 8
1.54 .95 4
1.62 .75 4
1.64 .54 8
1.68 50 8
1.71 .50 16

Table 3, again for n = m =4 without censoring, lists the 7 largest

values of T with corresponding exact P values 7%3 7%3 cees 7%, and P values

under the normal approximations with both MH and permutation variance. It

is seen that the P values are systematically too low using the MH variance.

i Table 3

i —

{ value of T Exact P value OSH P value og P value

: 2.54 .0143 .0035 0194
2.29 .0286 .0133 00312
2.09 .0429 0255 0446
1,95 .0571 .0424 .0558
1.92 .0714 .0380 0592
1,78 .0857 .0502 .0738
1.75 .1000 .0667 0770

The fact that in table 3 the permutation variance gives a better approxi-
mation is not surprising. Ve are computing the exact P value under the con-
ditional distribution of T given A, under the assumption of equal censoring.
This i§ the "home court' for the permutation variance. At this point we are

not arguing the virtue of the permutation variance, but are illustrating the

behavior of O:H described earlier,




Note that when n = m and censoring is equal a simple symmetry argument

shows that Cov(o2 »T) = 0. Thi- is an example for which two random variables
are uncorrelated but highly dependent,

1f one could show that the MH variance is the conditional variance of
T given an appropriate function of the data for which the conditional mean
of T remains zero, then the above mentioned behavior of a:H would no longer
be disturbing. The MH variance would be the appropriate variance for a well
defined conditional experiment. No such interpretation has been offered

however and it is clear by simple counterexamples that any such interpretation

would have to be asymptotic rather than exact,




4. A property of the permutation variance. Consider the case of equal

sample sizes and random censoring, with the group 1 censoring distribution,

H, allowed to differ from the group 2 censoring distribution I. Recall that

K
2 n 1 . . .
% EtiﬁffilK'g i;}’ the permutation variance, is a function of (K'Rl""’RK)

which under equal censoring is the conditional variance of T given (K,Rl...,RK).
In theorem 1 below it is shown that .; 2 72, where 02 is a function of
(K,Rl,...,RK) depending on (F,H,I) which is unbiased for VarH T. Thu. for
0
any (F,H,I), EH 02 2 EH (“2) = VarH T.
o P 0 0
In view of this property, the fact that c; does not vary with T for
- 2 . ops . 2 . X

fixed (K,Rl,...,RK) as oyu does, and the difficulty with “MH discussed in
section 3, it would seem prudent under approximately equal sample sizes to

2 2 . . Y
use ~_ rather than "My 1R assessing significance.

The following two lemmas are needed in the proof of theorem 1.

Lemma 1. Let o = be two probability distributions on

Reee Q
4]
=
(=¥
jo
[}
esoe TO

{0,1,...,m} with ay < BO and 2> Bl ,i=1, ..., m, Then a is
i-1 i-1
m m

stochastically larger than g i.e. Z a; 2 Z Bi’ r=0, ..., M.
T

, o m oa.
Proof. For any k, = Ya, = ) L -
Kk k =

m j a m jB, m
1+ ] n 2 1+ ) I . Y B,. Therefore
. a . B, 8 j
j=k+1 k¢l "i-1 j=k+1 (k+17i-1 k k !
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; Bx 'S n r-1 r-1 . m
i h(8) = g— 2 —— = h (a), SO ) By = 1 (1-h (8)) s T (1-h;(a)) = ) o [l
] Z 8. Z a. T 0 0 T
¥ k 1)

Lemma 2, Let X ~ B(n,p,), Y ~ B(n,p,). Then E[X(r-X) |X+Ysr] is maximized

when p; = p,. Its maximum value is L ::i .

Proof. (i)Casel, r s n, Define:

, (4.1) Yi(c) =
: n )2 r/2
E [r/Z] c » J =3, T even
| and ,
3 v; (¢)
, (4.2) Gi(c) = t;gij——-—-, i=o0, ..., [x/2]
2 v;(c)
. j=o 3
Note that: !
[¢3) .
(4.3) . E(X(r-X) [X+Yar) = '} £(r-£)a,(c)
£=0 £
where |
P11 _ 1
@4 TEN,

Since L(r-£) is increasing in the range>[0,[£]], (4.1) will be maximized
by that value of c(if such a value exists) for which the probability distri-
bution a(c), defined by (4.2), is stochastically largest,

We now prove that ¢ = ] gives the stochastically largest distribution.

By lemma 1 it will suffice to prove for abritrary positive c that:

(4.5) ay(1) < ay(c)

ai(l) ai(c) _
ai-l(l) 2 qi-l(c)‘ t

= 1, cvey [r/2]

? (4.6)
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The statement (4.5) is equivalent to:

(4.7) 10c |£||r ll[c£+cr £]

i
l -‘Fhe right side is a weighted average of E——%’-—--while the left side

T
puts all its weight on the value 156 . Since the function g(x) = &ac

r-xX

is decreasing in [0,r/2) and g(x) = g(r-x), it follows that for fixed ¢ g

is maximized at x = 0 or equivalently at x = r., Thus (4,5) is proved.

To prove (4.6) note that:

g . . r-1
‘ (4 8) ai(c) - c1+cl‘-1 r Odd i = 1. sesy -T
. — = A T, -
ai-ltc) 1c1 1+cr 1-1 T even, i = 1, ""EEZ
(4.9) ai(c) =2 cr/2 , reven, i = r/2
* qi_lzci r/2 cr/2-1+cr/2+T

where Xi is a constant independent of c¢. In both cases ((4.8) and (4.9) a
simple differentiation argument siows that the maximum is achieved at ¢ = 1.
! This concludes the proof of case 1.

(ii) Case 2, r 2 n. Supposer > n, Then (n-X) + (n-Y) = 2n - r < n, thus

by case 1, E[(n-X)[Zn-r)-(n-X)j|X+Y=r] is maximized by choosing P = P,- But

(n-X)[(2n-r)-(n-X) J = X(x-X)+n(n-r). Thus maximizing EL(n-X)[(2n-1)-(n-X) ]| Xe¥=r]

is equivalent to maximizing E(X(r-X)[x+Y=r), and case 2 is proved,

Finally note that when P, = Py
n

2o L(r-l)al(l) = g [ ]{r 2-2] ) ;tg:-ig
= T )
L

2

T

[er]

f
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Theorem 1. Assume n = m, Let the censoring variables for sample 1 (2) be
]

j i.i.d. with distribution H(I1). Assume that the censoring variables are
independent of the survival variables and that the two groups are indepen-

dent of each other. Then:

2
(4.10) EHO ab 2 VarHoT

Proof. The proof below is heuristic but can be made rigorous using martin-

I '
o e et A e s — ek

gales. For j = 1, 2 define Rj(u) to be the number of group j patients at

risk at time u ; define R(u) = RI[u)¢R2(u). Define H(u) to be the history

of the process until u~; this includes all censored and uncensored observations
and knowledge of group membership of the patients involved. Define N(t) to

be the number of uncensored observations in [0,t], and let h denote the

common hazard rate function for the two groups. Note that under H., dN(u)

and H(u) are conditionally independent given R(u), with

E(dN(u) |H(u)) = E(dN(u) |R(u)) = R(u)h(u)du. It follows that:

Ey Lg(H(w))dN()] = E, [E, (g(H(w)) [R(D)AN(w) ]
0 0o 0

e e Bha e Bt malmid i b

- B [By (BCH) RER@R(s)d) |

R, (U)R, (u)
Now uﬁn . L 3 2__ dN(u) is unbiased for Var, T. Defining

R%(u) 0

2. !Fl(:)_ E(R, (W)R,(u) [R(u))dN(u), and using (4.11) with

g(H(u)) = thu)Rz(u), we obtain:

(4.12) E. o = Var, T ;
Hy H \
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We wish to compute ;2 under known (F,H,I). For convenience we adopt
the convention of using left continuous rather than right continuous cdf's.
Thus, for example, H(x) = P, (X<x), and H(x) = P, (X2x). Now R, (u)<B(n,F(u)A(u))
and Rz(u)wB(m,FIu)TIu)), where B(n,p) denotes the binomial distribution with

| parameters n and p. By lemma 2, E, (Rl(u)Rz(uJIR(u)) is maximized when
i 0

H(u) = I(u), the maximum value being 2(2:_1)R(u)(k(u)-1).

2 1 n 1 ol
Thus o} [m[m)kcu) (R(u)-1)]dN(u)2f;zz—(u-)-EHo[Rl(u)Rz(u)IR(u) 1dN(u)=c”,

2., T2
3 and E. ¢C 2 E, ¢° = Var, T.
Hop My Hy

|
|
}
!
i
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S. Alternative variance estiwators. It was shown in section 4 that 02 is

unbiased for VarHOT and in the case of equal censoring reduces to the per-
mutation variance o;; under equal censoring ag is the appropriate variance
for a conditional test given A,

The estimator ;2 also works well in the following case. Assume that

all group 1 observations are censored at s and all group 2 observations at

times which exceed s. Define N(s) to be the number of uncensored observations

from the combined groups in [0,s]. Then 02 reduces to:

nm 3(s)n+m-i
{n+m) (n+m-1) i n+m-1+]

(5.1)

Note that (5.1) is unbiased for Var, T and is a function of N(s), Under

0

H0 the conditional distribution of T given N(s) is independent of F and

é EH (TIN(s)) = 0, therefore VarH (TIN(s)) is also a function of N(s) which is
0 0

H

unbiased for VarH T. Since N(s) is complete (follows from completeness of i
0

the binomial family) it follows that ; z. VarH (TIN(s)). Thus once again
0

02 reduces to a conditional variance and is the appropriate variance for a ;
i conditional test. !
i

i One further example to illustrate the use of 02: Suppose that all

patients enter the study at the same time, censoring is due only to termi-

nation of the study, and the study terminates at w,, the time of the kt'h

k
smallest order statistic from the combined sample. In this case ;2 is

easily computed to be:

nm k n+m-i
(nﬂll)(nﬂll-l)i_1 n+m-i+1

(5.2)

i h i, riaie ikt ¥ . o aii b
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Since (5.2) is unbiased for Var, T and is a constant, it coincides with

0
VarH T. This implies that VarH T is independent of F, a fact which can
v 0

easily be independently verified. Note that in the special cases k = n+m and

H

X = nem-1 (5.2) coincides with az.
Note that ;2 can only be computed under censoring assumptions. For the
three specific cases discussed above, 02 gave useful and appropriate variances.

(5.3) Case of known censoringﬁpimes. Suppose that all censoring times, including

those corresponding to uncensored observations are known. For example, if the
data is analyzed at time T and the only cause of censoring is termination of
the study, then a patient entering the study at time x has a censoring time

of T-x.

In this case we think of the censoring times as fixed numbers. Hypothetical
repetitions of the experiment yield different survival times but the same fixed
censoring times. The variance of the statistic T under Ho will depend on F.

This variance can be unbiasedly extimated by ;2. To do so we need to compute

EH (Rl(u)Rz(u)lk(u)) under known censoring times. Define Lj(u), j =1, 2 to be
0

the number of group j patients with censoring time 2 u, and £(u) = tl(u)+£2(u).
There are £(u) potential members of the risk set at time u all equally likely
under Ho to be included. The conditional distribution of RI(“) given R(u) is

thus hypergeometric. It easily follows that:

£, ()£, (u)R(u) (R(u)-1)
£(u) (£(v)-1)

(5.4) By (B (DR, (w) [RCw) =

To distinguish the estimator ;2 in the case of known censoring from pre-

viously considered cases we will denote it by 32. Then from (5.4) and (4.11):
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2 _ K 4,4, Ry-1)

(5.5) o —_———
i=] Ll(ti'l)ki
-2
(5.6) E, 0" = Var, T
Ho Ho b

where lji - lj(ti), j=1,2and g = ‘11 + £2i'

Note that when Lli = Rli’ LZi = RZi’ i=1l, ,.., K, then ¢“ = ozhﬂ.
~2 2 .

Thus ¢” and o Mt will be close together when most of the uncensored abser-

vations occur very shortly before their censoring times, Also note that
when Lli =n, LZi = m then ;z = ag. The reason for this is that under equal
censoring all n+m patients have the same probability under Ho of being in the
risk set at time u.

(5.6) Remark. The exact variance in the case of known censoring times is

computed by:

£ (), (v) .
1 2 R(u)-1
Var,, T = E E [—{-—g—- dN(u)]
Hoy Hy I £(u) (E(u)-1) Mo RO

- Lwbw [Z(u) LI C) i ““)] dF(u) .
£(u) (£(u)-1) F(u)
(5.7) Remark. It is undesirable on philosophical grounds to have the
statistical procedure depend on potential but unrealized censoring. Pratt
[2] has interesting comments on this point and Cox (3] and Efron [S] briefly 3
mention it as well,
The estimator 32 depends on unrealized censoring times while °§H’ a;,

and 0'2 (defined below) do not. Nevertheless, when all censoring times are

known I would use 02. I wouid not throw out part of the information just to r

avoid the above philosophical objection,
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It is clear that the values of the unrealized censoring times do not
provide intrinsic information about survival, the attribute of interest.
However they do provide information about the distribution of the test
statistic under hypothetical repititions of the experiment. In a frequentist
approach such information is often useful. To a Bayesian or follower of the
liklihood principle it is irrelevant,

(5.8) Remark. The rational for ;2 is as follows. The problem of estimating

VarH T can be reduced in an appropriate sense to that of estimating
0
R

1
y(u) = E, [(dN, (u) -
. Hy 1 R(u)

(u)
dN (t‘s))zldN(u)], where R,, R, N have previously been

defined and Nl(t) is the number of group 1 uncensored observations in [0,t]. 4
The M H estimator estimates y(u) by

Rl(u) 2 ~2
W = EHO dN, (u) - Ry IRl(u),Rz(u),dN(u) ; 0 estimates y(u) by

y(w) = By (g ) [RD)

In comparing vy(u) to Yur(“) we see that Var“ (y(u)) < Varﬂ (ymﬁ(u)) while
o 0 0

-~ -~ . -2 2 -
= + i i < Va .
COVHO(Y(U).Y(V)) COVHO(YMH(u),YMH(u)),lt thus follows that Varuoq rHooMH'

To interpret this result properly recall that °§H is computable from the data
without censoring assumptions while 02 requires special assumptions. When
h ~2 2

¢° is computed under specific censoring assumptions then Varﬂoa < Varﬂoo MH

under these assumptions, but not necessarily more generally.

-2
while reduction in variance is welcome my main reason for employing o~ is

that 1 believe it will work better than G;H when |T| is large. The difficulty
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in estimating y(u) when |T| is large is that we need an estimate of variance
under Ho from data which is extreme under “0' We do not want to use the
observed variance YMH(U) which we know is untypical of Ho. The estimator
;(u) removes the dependence of the variance estimator on Rl(u)/R(u) and
attempts to replace the observed variance yMH(u) by a quantity which better
estimates its expection, y(u).

The computation of ;(u) is simple under assumptions which imply that
there are a pool of patients who are potential members of the risk set at
u, and the R(u) patients who are actually in the risk set are chosen from
the pool by random sampling without replacement, This structure characterizes

the examples we have so far studied.

(5.9) Random Censoring. If we assume random censoring with distribution H

for group 1 and I for group 2, then the variance of T depends on (F,H,I) in

a complex way. The unbiased estimator ;2 also depends on (F,H,I), specifically:

(5.10) EHO(RI (u)R, (u) |R(u)=r) =

where:
(5.11) a = min(0,m-r), B = max(r,n), c(u) = Hw) A-Fu)T())
T(w) 1-F(u)ii(u))

Rather than try to estimate 6% we opt for a different approach. The
estimator ;2 requires knowledge of ‘11' LZi’ i=1, ..., k. We no longer know
the censoring times corresponding to uncensored observations. However,
defining Nj,i j =1, 2 as the number of group j observations among the first

i uncensored observations, we know that Rj,i-l S tji £ Rji + Nj,i-l’ i=1, 2.




N

This suggests estimating Lli by:

i

(t)

fi(e,)

(5.12) £.=2R.+] &
1i 1i j<i j

where 6j = 1 or 0 depending on whether the jth uncensored observation is
from group 1 or 2, and ﬁ is the Kaplan-Meier estimator of the censoring
distribution for group 1.

By Efron's ([5]) interesting observation of the self-consistency property

of the Kaplan-Meier estimator:

= nH(t

o>

(5.13) 14 i)

A

(5.14) £y, = ﬁf{ci) :

~ "

. . *2 . . % 2 P
We now define an estimator ¢ “ by substituting Lli’ 221, Li = Lli + LZi

for £);, £,, and £, in 6% (5.5) obtaining:
k 2..2,.(R.-1)
(5.15) 0*2 - 2 “11.21 i

*
The estimator o 2 performs well in the following cases. If group 1

observations are censors4 at s, group 2 observations at times which exceed s

th smallest

then 0'2 coincides with (5.1). If censoring occurs at L the k
order statistic in the combined sample, then 0*2 coincides with (5.2). In ]
the special case k = m+n (corresponding to no censoring) 0-2 equals o;. If |
ﬁ and i are approximately equal, indicative of equal censoring, then 0'2 will

be close to o:.
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» -
The estimator o 2 is an estimate of 02 which in turn appears to be
»
superior to o:H (see remark (5.9). It is hoped that ¢ 2 will generally be
better than °§M' particularly when |T| is large.

(5.16) Remark. Another expression for VarH T under random censoring is:

0
(5.17) VarHOT « nn J A(u)T(u)F ()E [B—:'@ﬂ'h(u)du
+B '+

where B ~ B(n-1,H(u)F(u)), B* ~ B(m-1,T(u)F(u)) with B and B' independent of

each other and of R(u). Estimating nii(u) by il(u), mI(u) by zz(u), ?a(u) by

RWRMWI-D  yu) by YU and approximating E -8 {uy 1 in (5.17) ylelds
£(u) (L(u)-1) R(u) B+B'+2

the estimator 0.2(5.15).

(5.18) Remark. Both 0*2 and oﬁﬂ throw out observations which are censored
prior to t, that is they treat the data as if n = Rll’ ms R21 and no un-
censored observations occur prior to t;. This is quite reasonable and

R21) rather

desirable. In fact attention should be focussed on VarH CTIRII,
0

that VarH T, and o: and 02 should be adjusted accordingly.
0

(5.19) One more censoring situation. Termination of the study occurs at

time Tlfor group 1 and T2 for group 2. Termination is one cause of censoring;
other causes are present such as withdrawal from the study, loss to follow-up,

etc. A group 1 patient entering the study at time x has a maximum censoring
time of 1'1 - x but may be censored sooner; similarly for group 2. Define
61, i =1, 2 to be the Kaplan-Meier estimate of Qi the group i distribution

of censoring due to causes other than termination of the study. In estimating

Qi the observations corresponding to death and censoring due to termination
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of the study are treated as censored, those corresponding to other causes

of censoring are treated as uncensored. Define:

A 31(t), tsTl -8
(5.20) Q s(t) =
: 0, t»> T1 -8
A a (), tsT, -5s
(5,21) q, (1) = 1 2 2
4 L 0, t> T2 -s

Let x; denote the entrance time to the study of the patient with the
uncensored observation at t i Finally ¢, = 1 or 0 depending on whether the
patient with the uncensored observation at ti was from group 1 (S#l) or

2 (6=0). Estimate £ ., £, by:

i1 G () !

7 = —3 E
(5.22) By =Ry * _1 6 = g |
i Q . (& J
, J f
; 2
; . i-1 Q . (t5)
: 5.23 , = R, + 1-€,) gmdoee :
(5.23) £33 = Ry ,-21( L
2,xj j b

a

The values Lli’ LZi are then substituted into the expression for gz (5.59).
In the above Ql and Q2 follow the earlier mentioned convention of left

rather than right continuous cdfs.
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6. Comments and Additions.

{6.1) Consider tihe class of test statistics:

g Ry

, i K3
(6.2) | T ='€§1g(R.i) 8-

The function g is ciosen to achieve good local power against specific
types of alternatives. The choice g(R) = R corresponds to Gehan's [6]

generalization of tne Wilcoxon test. Our remarks concerning oi and og,

i1
found in sections 3 and 4, carry over to Tg' The estimators o2 and

*
o] 2 are now defined bLy:

K

(6.3) o= ¥ Hifu Rt
g™ b AL Zw)
Zi(l’.i-l)Ri
. kK £,.2,.(R.-1)
(6.4) o 2 - 1172141 gz(Ri)

g : v (P -
i=1 (i(li l)Ri
For tiie case g(r) = YT use of (4.10) gives tne following expression

for the variance of Tg under known censoring times:

(6.5) f2, ()€, ()F (u)dF (u)

Taking expectations in (6.4) gives the variance under random censoring:

(6.6) amfiT(u) T (u)F (u)dF (u)

For the case g(r) = r the variance under known censoring times is

given by:

6.7) ) I W)F(u) L (L(u)-2)F(u)+2idF (u)




The variance under random censoring equals:
. (6.8) nmfH T F. (n-1)F G+ (m-1)F Te2 jdF

working frow (%.5) and (v.7) by estimating tnese expressions yield

*

. . : 2
estinators which are practically tae same as °g .

(6.3) The MH approach as extended by Mantel [8] combines a class of dependent
chi-square tables by summing the variances of appropriately defined uncorre-

lated random variables across the several tables. 1 believe that the same

behavior of the variance estimator discussed in section 3 occurs more generally.
. For a simple example suppose that No = n and the conditional distribution of
Ni given Ni-l is B(Ni_l,p), i=1,2, ... .
We wish to test p = Pop VS P < Py The appropriate version of the M

statistic would be:

g(Ni'Ni-IPO) Hq,
(6.10) T= =

/PoqogNi-l

where M = Z Ni' H0 will be rejected for T negative and large in absolute
i

value equivalently for -T large and positive. But the numerator of -T,

gy

n—Mqo, is large when i1 is small, in which case the denominator vﬂioqo is

small. In this case n-Mq0 and Mpoq0 have correlation -1.

The true distribution of il is negative binomial with parameters n and q,:

: r-1|,n- i
] (6.11) P, (=1} = [n_lJPo Tqgs T 2 1

The variance of Mg, - n under H, equals np,; its unbiased MH variance estimator
is MPOqO'

The distortion of P values in this case is serious even for fairly large
values of n.

The MH procedure is clever and useful, but should be used with care. i
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